
Sparse Structure Learning via Graph Neural Networks
for Inductive Document Classification

Yinhua Piao, 1 Sangseon Lee, 2 Dohoon Lee, 3 Sun Kim 1,3,4,5

1 Department of Computer Science and Engineering, Seoul National University
2 Institute of Computer Technology, Seoul National University

3 Bioinformatics Institute, Seoul National University, 4 AIGENDRUG Co., Ltd.
5 Interdisciplinary Program in Artificial Intelligence, Seoul National University

Abstract

Recently, graph neural networks (GNNs) have been widely
used for document classification. However, most existing
methods are based on static word co-occurrence graphs
without sentence-level information, which poses three chal-
lenges:(1) word ambiguity, (2) word synonymity, and (3) dy-
namic contextual dependency. To address these challenges,
we propose a novel GNN-based sparse structure learning
model for inductive document classification. Specifically, a
document-level graph is initially generated by a disjoint union
of sentence-level word co-occurrence graphs. Our model col-
lects a set of trainable edges connecting disjoint words be-
tween sentences, and employs structure learning to sparsely
select edges with dynamic contextual dependencies. Graphs
with sparse structures can jointly exploit local and global con-
textual information in documents through GNNs. For induc-
tive learning, the refined document graph is further fed into
a general readout function for graph-level classification and
optimization in an end-to-end manner. Extensive experiments
on several real-world datasets demonstrate that the proposed
model outperforms most state-of-the-art results, and reveal
the necessity to learn sparse structures for each document.

Introduction
Document classification, a task of using algorithms to au-
tomatically classify the input document to one or multiple
categories, is one of the most fundamental tasks in the field
of Natural Language Processing (NLP). The essential part
of document classification is to extract features that can rep-
resent the documents. Conventional approaches use hand-
crafted features, e.g., bag-of-words, term frequency-inverse
document frequency. With the advent of deep learning tech-
nologies, related works such as Word2Vec (Mikolov et al.
2013), utilize contextual information to learn word repre-
sentations. Considering the word order in a sequence, many
models adopt sequence-based models including recurrent
neural networks (RNNs) (Mikolov et al. 2010; Tai, Socher,
and Manning 2015; Liu, Qiu, and Huang 2016), and convo-
lutional neural networks (CNNs) (Kim 2014; Zhang, Zhao,
and LeCun 2015). Although these methods can capture the
local contextual information in the document, sequence-
based models still have difficulty in capturing long-range
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word co-occurrence information. With rapid adoption of
graph neural networks (GNNs) (Kipf and Welling 2016),
GNNs can be designed to capture non-consecutive word de-
pendencies in the document. Therefore, GNNs have recently
been used for document classification. TextGCN (Yao, Mao,
and Luo 2019) first applies GNNs on one corpus graph for
node-level document classification task. Huang et al. (Huang
et al. 2019) transform TextGCN to graph-level prediction
to reduce the memory consumption during training. To im-
prove generalization performance for new documents, there
are also works for inductive document classification. Tex-
tING (Zhang et al. 2020) constructs an individual graph
for each document where local word interactions can be
learned. HyperGAT (Ding et al. 2020) improves expressive
power of inductive model by exploiting high-order relations
in document-level hypergraphs. These methods, with satis-
fying results, can empirically prove that graph-based mod-
els can indeed capture long-range word dependencies which
benefits the model performance.

Nevertheless, almost all graph-based methods are de-
signed to construct static word co-occurrence graph for the
whole document without considering sentence-level infor-
mation. Each unique word in the graph is mapped to only
one representation in the latent space, which may bring three
potential challenges: (1) Word ambiguity. In the real world,
most words may have multiple meanings, and in different
contexts, a single word may have completely different mean-
ings depending on the context. In the static graph, an an-
chor word with multiple completely different meanings is
connected to all adjacent words as 1-hop neighbors, which
can misguide GNNs to blindly combine global informa-
tion and confuse syntactic information, as well as degrade
local information. (2) Word synonymity. Non-consecutive
words in the static graph can be mapped to similar positions
in the latent space, in many cases owing to their proxim-
ity to the same anchor word. However, most words have
their synonyms, and words adjacent to synonyms should
be mapped similarly. Therefore, some long-range informa-
tion between synonyms may still not be captured in a static
word co-occurrence graph. Last, (3) Dynamic contextual de-
pendency. Most GNN-based approaches consider nodes and
their neighbors to be homogeneous in the static document
graph, allowing simultaneous layer-by-layer message pass-
ing. However, syntactic and semantic information should be
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passed specifically and develop dynamically, rather than at
each hierarchy simultaneously. In conclusion, it is necessary
to learn the dynamic graph structure of documents with lo-
cal syntactic and global semantic information with dynamic
contextual dependency.

To address the gaps of aforementioned limitations, we
propose a novel sparse graph structure learning for induc-
tive document classification, which constructs learnable and
individual graphs for each document. Specifically, nodes
in the document graph first pass messages to their intra-
sentence neighbors and inter-sentence neighbors, which can
be regarded as local syntactic messages and global semantic
messages, respectively. Then we apply the proposed sparse
structure learning with Gumbel-softmax trick to learn and
update the graph structure, aiming for dynamic contextual
dependencies with fewer noise from layer to layer. The
learned graph with local and global information is further
fed into a general readout function for classification and op-
timization in an end-to-end manner. The contribution of this
paper is summarized as follows and all the code publicly
available at https://github.com/qkrdmsghk/TextSSL:
• We construct a trainable individual graph consisting of

sentence-level subgraphs for each document. To our best
knowledge, we are the first to construct a trainable graph
for inductive document classification.

• We propose a sparse structure learning model via GNNs
to learn an effective and efficient structure with dynamic
syntactic and semantic information for each document.

• We conduct extensive empirical experiments on several
real-world. In the experiments, our model outperforms
most existing approaches, which supports the effective-
ness of our approach.

Preliminaries
Graph Neural Networks
GNNs use the graph structure and node features to learn rep-
resentation vectors for each node in the graph to conduct the
node-level prediction task, or combine all of them to pre-
dict property of the graph. Recent researches have focused
on spatial-based GNNs that describe a general framework
of message passing networks. The essence of the message
passing network is to iteratively propagate and aggregate in-
formation across the nodes of the graph. Formally, the k-th
iteration of message passing process in a GNN consisting of
aggregation operation and update operation that is defined
as :

hkv = φ
(
f (k)(h(k−1)v , {h(k−1)u : u ∈ Nv})

)
, (1)

where hkv denotes the embedding vector at layer k associated
with node v, the function f (k)(·) aggregates and updates the
node representations from their neighbor nodes at the pre-
vious layer. φ(·) represents an injection function, such as
non-linear activation function. For graph classification, the
readout function aggregates node representations to obtain
the entire graph’s representation hG:

hG = R({h(K)
v |v ∈ G}). (2)

where R(·) denotes a simple permutation invariant function
such as global average pooling or global max pooling after
K iterations.

Gumbel-Softmax Distribution
Formally, let a discrete variable π has a distribution of prob-
abilities (φ1, ..., φn) with class C = {c1, ..., cn}. Gumbel-
max (Gumbel 1954) provides an efficient way for the cate-
gorical distribution to sample xπ with:

xπ = argmax(log φi +Gi) (3)

where Gi is a Gumbel noise sampled from Gumbel(0,1). To
solve non-differentiable problem of Gumbel-Max, Jang et
al. (Jang, Gu, and Poole 2016) propose Gumbel-Softmax to
approximate it as follows:

x̂π =
exp((log(φi) +Gi)/τ)∑n
j=1 exp((log(φj) +Gj)/τ)

(4)

where a softmax function with an adjustable temperature τ
is to control the argmax operation to make it possible for a
differentiable optimization.

The Proposed Model
In this section, we introduce our model for inductive doc-
ument classification. The proposed model consists of three
main parts. We first construct sentence graphs in which the
node embedding is learned with a local and global message
passing operation. Based on the node embedding, we pro-
pose a sparse structure learning for the graph structure re-
finement. Last, we regularize the graph structure to preserve
consistency of the original syntactic information.

Problem Definition
We are given a set of documents D with a set of document
labels Y where each document d ∈ D may have multiple
sentences Sd = [sd0, ..., s

d
k] and each sentence sd ∈ Sd is

composed of multiple words Wsd = [w0
sd , ..., wn

sd ]. We
represent each document as an individual graph Gd using its
hierarchical structure for inductive learning. For simplicity,
we omit the document index d throughout the paper. The
document graph is composed of multiple words in Ws and
their connections. Our goal is to learn the structure and make
a prediction for each G.

Graph Construction
Definition 1. Sentence-level Subgraph Given a sentence
si ∈ S , a sentence-level subgraph Gi = (Vi, Ei) can rep-
resent the sentence si as a word co-occurrence graph. The
node set Vi contains words in sentence si. The edge set Ei
contains all connections between any pair of words in Vi
that can co-occur in the same fixed-size sliding window (Mi-
halcea and Tarau 2004). Therefore, a preliminary document
graph G̃ = (V, E) can be represented by taking the disjoint
union of all sentence-level subgraphs GS = {G1, ...,Gn},
where n denotes the number of sentences within the docu-
ment.
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Figure 1: Overview of the proposed model. (a) Model framework. (b) GNN: Local and Global Joint Message Passing. (c) SSL:
Sparse Structure Learning contains (c.1) Dynamic Contextual Dependency Score, (c.2) Adaptive Sampling for Sparse Structure,
and (c.3) Reconstructing Sparse Graph.

Definition 2. Local Syntactic Neighbor Given a node
v ∈ V in a preliminary document graph G̃, we define a lo-
cal syntactic neighbor u ∈ Nt(v) that is adjacent to node
v within sentence-level subgraphs GS . Since sentence-level
subgraphs GS contain relatively more invariant and syntactic
information, we constrain the local syntactic neighbors to be
static and deterministic during graph structure learning.

Definition 3. Global Semantic Neighbor Given a node
v ∈ V in a preliminary document graph G̃, we define a
global semantic neighbor z ∈ Nm(v) that can have dynamic
relation with node v between sentence-level subgraphs Gs.
Global semantic neighbors of each node in V are dynamic
and can be learned and selected via structure learning.

A document-level graph G = (V, {Et ∪ Em}) is finally
composed of all sentence-level subgraphs GS , where edges
Et connect nodes and their local syntactic neighbors Nt(·)
and edges Em connect nodes and their global semantic
neighbors Nm(·). In sparse graph structure learning mod-
ule, global semantic neighbors can be learned and chosen
dynamically during which local syntactic edges can guide
the dynamic edge relaxation.

Local and Global Joint Message Passing

Unlike existing GNNs considering that all nodes are homo-
geneous, we differently aggregate the neighbor messages
by distinguishing the neighbor node types (local syntactic
neighbor and global semantic neighbor) to update the node
representation. The message passing part can be reformu-

lated as:

h(k)v = φ
(
h(k−1)v W

(k)
1 + t(k)v W

(k)
2 +m(k)

v W
(k)
3

)
, (5)

where function φ denotes an injective function ReLU(·).
h
(k)
v ∈ Rb is the node representation vector and b is the

number of hidden dimension. The local syntactic neighbor
representations t(k)v ∈ Rb and global semantic neighbor rep-
resentations m(k)

v ∈ Rb can be expressed as:

t(k)v =
∑

u∈Nt(v)∪{v}

eu,v√
ζ̂uζ̂v

h(k−1)u (6)

m(k)
v =

∑
z∈Nm(v)(k−1)

ez,v√
ζ̂z ζ̂v

h(k−1)z (7)

where eu,v ∈ Et represents edge weight between node v and
its local syntactic neighbor u. ez,v ∈ E(k−1)m represents edge
weight between node v and its global semantic neighbor z.
Here, we normalize the raw edge weight to prevent from the
influence of degree bias. Motivated by (Kipf and Welling
2016), we divide both edges eu,v and ez,v by the ζ̂v where,
ζ̂v =

∑
j∈N Âvj with self-looped adjacency matrix Â =

A+ I .
With the iteration of local and global message passing

operation on G, nodes combine high-order neighbor nodes
within sentences GS and also select and combine dynamic
neighbor nodes between sentences. In this way, the local
syntactic information can be combined with global semantic
information in each layer, which can learn the rich contex-
tual information in the document.



Sparse Structure Learning
Since relationships among sentences are not known prior,
it is vital to refine the document-level graph G by exploit-
ing local and global contextual dependencies. One feasi-
ble approach is learning from a Complete Graph G∗ =
(V, {Et∪E∗m}) where nodes between subgraphs GS are fully
connected. However, fully connected words between sen-
tences usually bring both necessary and unnecessary infor-
mation, a form of noisy information. Therefore, in this sec-
tion, we perform a sparse structure learning, which can be
divided into two parts. (1) Calculating the relative score of
global semantic candidate neighbors of each node, which
has dynamic contextual dependency. (2) Conducting adap-
tive hard selection for global semantic candidate neighbors
using Gumbel-softmax approach. Finally, global semantic
neighbor set is updated and the document-level graph G can
obtain a sparse structure from G∗.
Dynamic Contextual Dependency Score Given a node
v ∈ V in a complete graph G∗, all neighbors of node v are in
N ∗(v), where we can obtainN ∗m(v) = N ∗(v)−N (v)(k−1)

that contains all global semantic candidate neighbors of
node v. We first calculate attention coefficient score between
each neighbor j ∈ N ∗(v) and node v as follows:

a
∗(k)
v,j = ψ

(
a(k)

>
[h(k)v W(k)||h(k)j W(k)]

)
(8)

where W(k) ∈ Rb×b denotes the projection for node fea-
tures hv ∈ R1×b and hj ∈ Rn×b. k denotes the current layer
of our model. We adopt function ψ as LeakyReLU(·) activa-
tion function, and a ∈ Rb×1 is a learnable vector. To con-
sider the correlation between current local and global con-
textual information, we normalize a∗(k)v,j with softmax func-
tion across the nodes to calculate dynamic context depen-
dency score:

s
(k)
v,j =

exp(a
∗(k)
v,j )∑

u∈N∗(v) exp(a
∗(k)
v,u )

. (9)

We adopt normalization operation on N ∗(v) which both
contains: existing neighbors N (v)(k−1) and the global se-
mantic candidate neighbors N ∗m(v) that are going to be se-
lected in current layer. The existing neighbors consist of
both local syntactic neighbors Nt(v) and global semantic
neighbors Nm(v)(k−1) that are selected in previous layers.
Therefore the score s(k)v,j of global semantic candidate neigh-
bors can elucidate a relative difference compared to existing
dynamic contextual dependency of node v.

Sampling Adaptive Neighbors for Sparse Structure
Based on the dynamic contextual dependency score s(k)v,j ,
we perform an adaptive sampling on the G∗ . To determine
sparse edge, we set a threshold to select meaningful global
semantic neighbors j for each node v via argmax opera-
tion. However, this operation is not be differentiable dur-
ing back-propagation process to optimize model. Inspired
from (Jang, Gu, and Poole 2016), we first generate a neigh-
bor selector p(k)v,j ∈ {0, 1} from the Bernoulli distribution

{π1 := s
(k)
v,j , π0 := 1 − s(k)v,j} and adopt Gumbel-Softmax

approach to generate differentiable probability p̂(k)v,j of selec-

tor samples p(k)v,j as follows:

p̂
(k)
v,j =

exp((log π1 + g1)/τ)∑
i∈{0,1} exp((log πi + gi)/τ)

, (10)

where g1 and g0 are i.i.d variables sampled from Gumbel
distribution, and τ ∈ (0,∞) denotes temperature parameter.
As τ → 0, p̂(k)v,j can be annealed to categorical distribution.

Then we can get a discrete neighbor selector p(k)v,j by setting
a threshold T .

Reconstructing Sparse Graph Thus, we can select infor-
mative neighbors for node v using p(k)v,j . It is worth mention-

ing that despite p(k)v,j is obtained from s
(k)
v,j that is calculated

by both existing neighbors and global semantic candidate
neighbors, we only select the neighbors from the candidate
neighbor set to maintain the local syntactic topology of the
document graph. Specifically, we update the global seman-
tic neighbors Nm(v)(k) for node v with selected candidate
neighbors as follows:

Nm(v)(k) = Nm(v)(k−1) ∪ {j [|]∀j → p
(k)
v,j = 1}. (11)

where j ∈ N ∗m(v). In addition, for static local syntactic
neighbors Nt(v), we compute the entropy to preserve con-
sistency of the original syntactic information and prevent too
much structure variation in the graph.

L(k)
reg =

∑
v∈V

∑
j∈Nt(v)

−p̂(k)v,j log (p̂
(k)
v,j ), (12)

At the last iteration, all of the nodes in the graph G are fed
into readout function with simple summation operation and
linear operation. We use cross entropy loss function l(·, ·) to
measure prediction and true label y of the document.

Lpred = l(R(hv), y), (13)
We therefore minimize the loss by summing prediction loss
Lpred and averaged regularization loss λ

∑
k L

(k)
reg for each

document classification tasks, where λ is a hyperparameter
to adjust the trade-offs between newly learned structure and
original structure.

Experiments
Datasets
For a fair and comprehensive evaluation, we use the same
benchmark datasets that are used in (Yao, Mao, and Luo
2019). There are five datasets in three different domains,
including sentiment analysis, news classification, and topic
classification domains. We use MR dataset for binary sen-
timent analysis with either positive or negative polarity. We
use three datasets in news classification. 20NG is a news-
group file dataset with 20 categories and reasonably bal-
anced. R8 and R52 are two subsets of Reuters 21578 (Mos-
chitti 2003) datasets with 8 and 52 categories respectively
and both two datasets are extremely imbalanced. Ohsumed
is a topic classification dataset consisting of medical ab-
stracts with 23 categories, such as cardiovascular disease.
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Dataset #Docs #Training #Test #Classes (ρ) #Vocab. Avg.#Length Avg.#Sentence #Prop.NW

MR 10,662 7,108 3,554 2 (1.0) 18,764 20.39 1.17 30.09%
R8 7,674 5,485 2,189 8 (84.7) 7,688 65.72 4.03 2.60%
R52 9,100 6,532 2,568 52 (1666.7) 8,892 69.82 4.34 2.63%
Ohsumed 7,400 3,357 4,034 23 (62.5) 14,157 135.82 8.59 8.46%
20NG 18,846 11,314 7,532 20 (1.6) 42,757 221.26 6.06 7.40%

Table 1: Statistics of the datasets. ρ denotes class imbalance ratio (the sample size of the most frequent class divided by that of
the least frequent class). The Avg.#Length and the Avg.#Sentence mean the number of words and the number of sentences in a
document, respectively. The #Prop.NW denotes the proportion of new words in test.

Categories Baselines MR R8 R52 Ohsumed 20NG

Word-based fastText 72.17±1.30 86.04±0.24 71.55±0.42 14.59±0.00 11.38±1.18
SWEN 76.65±0.63 95.32±0.26 92.94±0.24 63.12±0.55 85.16±0.29

Sentence-based
CNN-non-static 77.75±0.72 95.71±0.52 87.59±0.48 58.44±1.06 82.15±0.52
LSTM (pretrain) 77.33±0.89 96.09±0.19 90.48±0.86 51.10±1.50 75.43±1.72

Bi-LSTM 77.68±0.86 96.31±0.33 90.54±0.91 49.27±1.07 73.18±1.85

Graph-based (Tr)

TextGCN 76.74±0.20 97.07±0.10 93.56±0.18 68.36±0.56 86.34±0.09
Huang et al. - 97.80±0.20 94.60±0.30 69.40±0.60 -
TensorGCN 77.91±0.07 98.04±0.08 95.05±0.11 70.11±0.24 87.74±0.05

DHTG 77.21±0.11 97.33±0.06 93.93±0.10 68.80±0.33 87.13±0.07

Graph-based (Ind)
TextING 78.93±0.65 97.34±0.25 93.73±0.47 67.95±0.52 OOM

HyperGAT 77.36±0.22 96.82±0.21 94.15±0.18 66.39±0.65 84.65±0.31

Our proposal 79.74±0.19 97.81±0.14 95.48±0.26 70.59±0.38 85.26±0.28

Table 2: Test accuracies of various models on five benchmark datasets. The mean± standard deviation of all models are reported
an average of 10 executions of each model. Graph-based (Tr) means transductive graph-based methods and Graph-based (Ind)
means inductive graph-based methods.

Experimental Settings
For quantitative evaluation, we follow the same train/test
splits and data preprocessing for MR, Ohsumed and 20NG
datasets as (Kim 2014; Yao, Mao, and Luo 2019). For R8
and R52 datasets, they are only provided by a preprocessed
version that lack punctuations and do not have explicit sam-
ple names. Since we use documents with sentence segmen-
tation information to construct graph, we re-extract the data
from original Reuters-21578 dataset. More details on the
preprocessing of R8 and R52 dataset are provided in Ap-
pendix. In each experiment, we randomly select 10% docu-
ments from the training set to build validation set. A statis-
tics of the benchmark dataset is listed in Table 1.

Baseline Methods
In our experiments, the baselines are divided into three cat-
egories: word based methods, sequence based methods and
graph based methods. In word-based methods, we use fast-
Text (Joulin et al. 2016) and SWEM (Shen et al. 2018).
In sequence-based methods, we use CNN (Kim 2014) with
pretrained word embedding, and RNN (Liu, Qiu, and Huang
2016) with pretrained word embedding and its variant mod-
els LTSM from (Yao, Mao, and Luo 2019). Graph-based
models for document classification can be categorized into

transductive learning and inductive learning. We compare a
series of GNN-based transductive models, such as TextGCN
(Yao, Mao, and Luo 2019), TensorGCN (Liu et al. 2020),
DHTG (Wang et al. 2020), Huang et al. (Huang et al. 2019).
We also compare with recent published inductive models,
such as HyperGAT (Ding et al. 2020), TextING (Zhang
et al. 2020). Detail of these methods are provided in related
works.

Parameter Settings
In this part, we describe the hyperparameter ranges for
model training. First, we search GNN layers from {2, 3}.
Batch size is chosen from {16, 64, 128, 256}. We set the
initial node dimension to 300, and then we search the hid-
den node dimension from {96, 256, 512}. The hyperparam-
eters of all datasets are reported in the Appendix. We use
Adam (Kingma and Ba 2014) to optimize the model. We
use PyTorch (Paszke et al. 2019) to implement our archi-
tecture. For Texting and HyperGAT baselines, we use the
same datasets for fair comparisons. All models are trained
on a single NVIDIA GeForce RTX 3080 GPU. For baseline
models, we either show the results reported in previous re-
search (Yao, Mao, and Luo 2019) or run the codes provided
by the authors using the parameters described in the original
papers. More details can be found in the Appendix.



Experiment Results
Table 2 shows performance comparisons of the different
methods on five benchmark datasets. Firstly, most graph-
based methods outperform both word-based and sequence-
based baselines, indicating the long-range dependencies
captured by graph-based models benefit document classi-
fication. Next, we compare our model with transductive
and inductive graph-based models, respectively. Overall, our
model achieves best results among all inductive learning
models, indicating that the sparse graph structure learned
from our model using dynamic contextual information has
a positive effect on inductive learning. To summarize, our
observations are as follows:

Unseen words. It is noted in Table 2 that our model
significantly outperforms in MR dataset. According to the
#Prop.NW in Table 1, we can find that there are many un-
seen words in the test set, which indicates that the sparse
structure of the documents learned by our model using in-
ductive learning favors the generalization ability.

Document length. From Table 1 and Table 2, we find a
trend that inductive models perform better on short docu-
ments (MR, R8, and R52), while most transductive meth-
ods perform relatively well on long documents (Osumed,
20NG). It seems that long documents own denser structures
that can benefit message passing for the transductive meth-
ods. For inductive learning, the dense structure introduces
additional noise, which makes the learning of the model
difficult. Even so, our model combines syntax and global
semantics to learn sparse graphs for documents. Therefore
the proposed model outperforms all baselines on Ohsumed
dataset and all existing inductive methods on 20NG dataset.

Dynamic contextual dependency. Most notably, our
model and TensorGCN achieve the best performance in
the inductive and transductive models, respectively. Ten-
sorGCN, like our model, also takes into account both syn-
tactic and sequential information. This suggests that con-
sidering sequential, syntactic and semantic information in
these datasets can help a lot in document classification. Un-
like TensorGCN, our model is able to perform inductive
learning and can leverage the learned sparse dynamic con-
textual dependencies from rich structured document to im-
prove generalization performance in more complex classi-
fication tasks, e.g., unbalanced (R52) and domain-specific
(Ohsumed) datasets.

Issues in Constructing Document-level Graph
In this subsection, we analyze the effectiveness of differ-
ent ways to construct document-level graphs for the docu-
ment classification task: (1) Word co-occurrence graph, (2)
disjoint graph, (3) complete graph and (4) our graphs. The
word co-occurrence graph is created by a simple sliding win-
dow method that is not considering the sentence informa-
tion. Then we learn a disjoint graph in the model by set-
ting threshold T (in the equation 10) equals to 1, which can
lead to none of edges are sampled during structure learn-
ing, thus the inter sentence information is completely ig-
nored and the graph only focuses on the intra-sentence in-

Graph R8 R52 Ohsumed
WordCooc 97.20±0.29 93.82±0.15 68.08±0.32
Disjoint 97.29±0.21 94.80±0.20 69.72±0.27
Complete 97.40±0.25 94.35±0.10 67.57±0.30

Ours 97.76±0.16 95.32±0.21 70.53±0.30
Ours w/ reg 97.81±0.14 95.48±0.26 70.59±0.38

Table 3: Comparison with different constructions of
document-level graphs. (1) WordCooc denotes word co-
occurrence graph. (2) Disjoint means a disjoint union of
sentence-level subgraphs. (3) Complete graph means dis-
joint graph with fully connected edges between sentences.
(4) Ours graph is constructed by sentence-level subgraphs
and learned by sparse structure learning(w/ reg means we
add regularization to our model).

τ R8 R52 Ohsumed
0.01 97.50±0.29 95.16±0.18 70.59±0.38

0.1 97.34±0.13 95.48±0.26 70.21±0.40
0.2 97.44±0.39 95.03±0.16 70.33±0.32
0.5 97.81±0.14 94.56±0.33 70.34±0.37
1.0 97.35±0.24 95.09±0.32 70.22±0.29

Table 4: Test accuracy with different temperatures τ for
adaptive sampling.

formation. On the contrary, we may set threshold to 0 to
learn a complete graph, where all words inter-sentence are
connected to each other. Ideally, this complete graph would
have been able to learn relatively global information, how-
ever, the sharp increase in the number of edges dissolves the
information within sentences, and it cannot learn informa-
tive features to perform the task effectively.

The experimental results of these graphs and our graphs
are shown in Table 3. We note that our graphs perform the
best. This suggests that (1) it is useful to use sentence infor-
mation to construct document-level graph for classification
tasks, allowing for word sense disambiguation and captur-
ing synonyms. And (2) sparse structures learned from dy-
namic contexts in documents can help improve the gener-
alization of document classification. It is worth noting that
disjoint and complete graph have different results on differ-
ent datasets, indicating that each documents owns its char-
acteristics and they need to be learned adaptively according
to the goal of document classification.

Adaptive Sampling Analysis
To obtain a proper sampling temperature for each dataset,
we set five temperatures of each dataset for experiments in
table 4. During sampling the adaptive neighbors for each
nodes via Gumbel-softmax with an adjustable temperature,
the smaller the temperature, the more the samples tend to be
categorically distributed, which in our model represents the
document graph learning to a more sparse structure. From
the results, we can see that different datasets have different
proper temperatures, and the Ohsumed dataset reaches the



0.00 0.25 0.50 0.75 1.00
Training Percentage

0.7

0.8

0.9

M
ic

ro
-F

1
 s

co
re

0.00 0.25 0.50 0.75 1.00
Training Percentage

0.2

0.4

0.6

M
a
cr

o
-F

1
 s

co
re

Methods Ours HyperGAT TextING

Figure 2: Micro F1 score and Macro F1 score with different
percent of training data from 0.025 to 1 on R52 dataset.

appropriate temperature at a very small value, which meets
the same conclusion as the ablation study in the previous
section, i.e., the learned sparse structures are adaptive for
topic label classification for Ohsumed dataset. In Appendix,
more details for the temperatures of the other datasets and a
real case study of visualizing important sparse connections
that are learned by our model are provided.

Generalization on Imbalanced Unlabeled Data
To estimate the generalization ability of our model over im-
balanced dataset, we use different proportions of training
data on R52 dataset to compare with the inductive learn-
ing baselines. As the number of training sets decreases, it
becomes more challenging to train model on extremely im-
balanced datasets. Figure 2 shows that all inductive meth-
ods achieve improved performance as the number of la-
beled training data increases. Our method significantly out-
performs other inductive baselines in all cases, indicating
that the sparse document structure learned using sentence
information allows our model to generalize well even in ex-
tremely imbalanced dataset.

Related Works
Document classification
Document classification is one of the most fundamental
tasks in the field of natural language processing (NLP). Doc-
ument classification is widely used in many downstream ap-
plications, such as spam filtering (Wu et al. 2020a), news
classification (Liu and Wu 2018), sentiment analysis (Med-
hat, Hassan, and Korashy 2014), etc. An important part of
document classification is feature extraction. The traditional
approach is to use word-based statistical models to compute
features of documents and apply them to downstream classi-
fiers, such as support vector machines (Suykens and Vande-
walle 1999), naive Bayes (McCallum, Nigam et al. 1998),
random forests (Svetnik et al. 2003), etc. With the rapid
development of deep learning, many feature-based deep
learning models have been proposed, such as the study of
word representation learning models (Mikolov et al. 2013;
Grover and Leskovec 2016). Considering the word order
in sequences, many models use sequence-based models, in-
cluding recurrent neural networks (RNNs) (Mikolov et al.
2010; Liu, Qiu, and Huang 2016), convolutional neural net-
works (CNNs) (Kim 2014). In addition, there are also mod-
els, such as (Yang et al. 2016; Peng et al. 2021), leverage

document hierarchical structures to jointly consider word
order-sentence order information. Since the above models
are studied based on sequence data, the dependencies be-
tween long sentences may not be taken into account. In-
spired by the semi-supervised GNN proposed by (Kipf and
Welling 2016), the study of transforming documents into
data structured as graphs and optimizing GNN parameter
learning model on the document graphs has rapidly gained
attention.

GNNs for Document Classification

The popularity of GNNs have grown rapidly in recent years
(Kipf and Welling 2016; Veličković et al. 2017; Hamilton,
Ying, and Leskovec 2017; Xu et al. 2018). In natural lan-
guage domain, GNN can better capture the non-consecutive
phrases and long-distance word dependency in the docu-
ments (Wu et al. 2020b; Li et al. 2020). Recent works on
GNNs for document classification can be divided into two
categories. One is transductive learning. TextGCN (Yao,
Mao, and Luo 2019) first applies GNNs on a whole corpus
graph. Huang et al. (Huang et al. 2019) build graphs for each
document with global shared structure to support effective
online learning. TensorGCN (Liu et al. 2020) jointly learns
syntactic, semantic and sequential on a document graph ten-
sor based on a whole corpus. DHTG (Wang et al. 2020)
propose a novel hierarchical topic graph to learn an cor-
pus graph with meaningful node embeddings and seman-
tic edges. While transductive learning models have to be re-
trained once evaluating an unseen documents, which is unre-
alistic in the real world. On the other hand, inductive models
can solve this problem. Peng et al. (Peng et al. 2018) present
a graph-based model to perform hierarchical text classifica-
tion. TextING (Zhang et al. 2020) builds individual word
co-occurrence graphs for each document and shows a better
generalization performance on unseen documents. Hyper-
GAT (Ding et al. 2020) proposes novel document-level hy-
pergraphs and inject topic information to obtain high-order
semantic information in each document. However,the hyper-
graphs with pre-defined latent topics lacks local syntactic in-
formation. Our proposed model makes first attempt to lever-
age sequence information to construct novel document-level
graphs that can jointly aggregate local syntactic and global
semantic information to learn fine-grained word representa-
tions for autonomous inductive document classification.

Conclusion
In the real world, each document has its own rich sentence
structure, where the intra-sentence context contains local
information, and the inter-sentence context captures long-
range word dependencies. To this end, we construct a novel
trainable document-level graph to jointly capture local and
global contextual information. We propose a sparse struc-
ture learning via GNNs to refine the structure of the graph
with learned dynamic context dependencies. Experimental
results show that our proposed approach of combining and
learning local and global information is effective for induc-
tive document classification.
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